Bloque 5. -UTILIZAS FUNCIONES FACTORIZABLES EN LA RESOLUCIÓN DEPROBLEMAS.





  • Ceros y raíces de la función.
  • Teorema del factor y residuo
  • División sintética
  • Teorema fundamental del álgebra
  • Teorema de factorizacion


Ceros o raíces en una función:

Llamamos ceros o raíces de una función f a los valores de x para los cuales se cumple que f(x)=0. Los ceros de una función son las abscisas de los puntos en los cuales su gráfica tiene contacto con el eje de las x.

Ejemplos:
f(x) = 0 \,
Por ejemplo, dada la función:
f(x) = x^2 - 6x + 8 \,
Planteando y resolviendo la ecuación:
0 = x^2 - 6x + 8 \,





Teorema del factor y el residuo: 

Teorema del residuo: 

Si se divide la función polinomial ƒ(x) entre el binomio x - a donde a es un número real, el residuo es igual a ƒ(a).
A partir de lo anterior, si ƒ(a) = 0, entonces x - a es un factor del polinomio porque el residuo es cero. Cuando se encuentra un valor dex para el cual ƒ(x) = 0 se ha encontrado una raiz del polinomio, en el supuesto anterior, a es una raiz del polinomio.


     Teorema del factor: 

Si a es una raiz de ƒ(x), entonces x - a es un factor del polinomio, donde a es un número real.
Aqui podemos observar la importancia de conocer el valor del residuo, ya que si éste es igual a cero, nos va a indicar que hemos encontrado un factor del polinomio y con él, una raiz del polinomio (una solución a la ecuación polinomial ƒ(x) = 0).





División sintética:

La división sintética se realiza para simplificar la división de un polinomio entre otro polinomio de la forma x – c, logrando una manera mas compacta y sencilla de realizar la división.

Pasos: 
  1. Se ordenan los coeficientes de los términos en un orden decreciente de potencias de x hasta llegar al exponente cero rellenando con coeficientes cero donde haga falta
  1. Después escribimos “c” en la parte derecha del renglón
  1. Se baja el coeficiente de la izquierda al tercer renglón.
  1. Multiplicamos este coeficiente por “c” para obtener el primer numero del segundo renglón (en el primer espacio de la izquierda nunca se escribe nada).
  1. Simplificamos de manera vertical para obtener el segundo número de el tercer renglón.
  1. Con este último número repetimos los pasos cuatro y cinco hasta encontrar el último número del tercer renglón, que será el residuo.


Ejemplo: 


Teorema fundamental del álgebra:

El teorema fundamental del álgebra establece que todo polinomio de una variable no constante con coeficientes complejos tiene un raíz compleja, es decir, existe un número complejo que evaluado en el polinomio da cero. Este incluye polinomios con coeficiente reales, ya que cualquier número real es un número complejo con parte imaginaria igual a cero.
Implica todo polinomio de grado n de una variable no constante con coeficientes complejos n tiene, contando con las multiplicidades, exactamente n raíces. La equivalencia de estos dos enunciados se realiza mediante la división polinómica sucesiva por factores lineales.

Dato: Pedro Rothe (Petrus Roth), en su libro Arithmetica Philosophica, escribió que una ecuación polinómica de grado n puede tener n soluciones. Alberto Girardo, en su libro L'invention nouvelle en l'Algebre , aseveró que una ecuación de grado n tiene n soluciones, pero no menciona que dichas soluciones deban ser números reales. Más aún, él agrega que su aseveración es válida "salvo que la ecuación sea incompleta", con lo que quiere decir que ninguno de los coeficientes del polinomio sea igual a cero. Sin embargo, cuando explica en detalle a qué se está refiriendo, se hace evidente que el autor piensa que la aseveración siempre es cierta; en particular, muestra que la ecuación
x^4 = 4\,x - 3






Teorema de factorización: 

 Asegura que las funciones enteras pueden ser representadas mediante un producto que envuelve sus ceros. Además, cualquier sucesión que tienda al infinito tiene asociada una función entera con ceros precisamente en los puntos de esa sucesión.

En matemáticas, la factorización (o factoreo) es la descomposición de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc) en forma de multiplicación. Existen diferentes técnicas de factorización, dependiendo de los objetos matemáticos estudiados; el objetivo es simplificar una expresión o reescribirla en términos de «bloques fundamentales», que reciben el nombre de factores, como por ejemplo un número en números primos, o un polinomio en polinomios irreducibles.
El teorema fundamental de la aritmética cubre la factorización de números enteros, y para la factorización de polinomios, el teorema fundamental del álgebra. La factorización de números enteros muy grandes en producto de factores primos requiere de algoritmos sofisticados, el nivel de complejidad de tales algoritmos está a la base de la fiabilidad de algunos sistemas de criptografía asimétrica como el RSA.